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ABSTRACT

For an integer k 2 t, let t := (ti)_: be a nondecreasing real sequence

with ti < titk , and let

k-1
Ni - [ti,--.'t ])('—x)+ Y

,k,E(x) = ([t1+1'ao',ti+k] i+k~-1
It is well-known that Ni k.t ore B~splines of order k for the knot
’ '. .

sequence t. Suppose that | := (uj)~: is a sequence of integers and

T, =t . Then N allows the following representation:

3 llj jlkl;‘
o N = 1N .
i Jek,X % Bj'kllls( ! i,k.t

The coefficient sequence Bj X, 1.t is called a discrete B-spline with T and

Reges .

with respect to t. This paper develops several properties of discrete
B-splines and proves, in particular, the total positivity of the discrete

spline collocation matrix.
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SIGNIFICANCE AND EXPLANATION

e
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“"“‘”ﬁ> Spline interpolation is an important tool of approximation. Usually, it

L ) : costs less computation and yields a good approximation. The question of

existence and uniqueness of such an interpolant is settled by the Schoenberg-
Whitney Theorem, which is the basis for spline interpolation. There is a
strong relationship between a spline and the coefficients in the expansion of
the spline into a B-spline series. In many ways, the coefficient sequence
behaves like the spline it represents. For this reason, it is called a
discrete spline. 1In this paper, we develop several properties of discrete B-
splines and prove the discrete analogue of the Schoenberg-Whitney theorem. It
is expected that the result obtained here would play a role in discrete spline

interpolation, discrete minimization and other related areas. QEET*”
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TOTAL POSITIVITY OF THE DISCRETE SPLINE COLLOCATION MATRIX

RONG~QING JIA*

Discrete polynomial splines on a uniform mesh were first introduced by
O.L. Mangasarian and L.L. Schumaker [9), where discrete polynomial splines
were defined as the solution of certain discrete minimization problems. Later
on, L.L. Schumaker {11] gave a description of constructive properties of these
discrete polynomial splines. T. Lyche in his thesis [8] translated wany
theorems on continuous polynomial splines into their discrete analogues.
However, they did not view discrete B-splines as B-spline coefficients of
continuous splines, which allows consideration of discrete spline for
arbitrary meshes. It was C. de Boor who first took such a point of view. In
my opinion, de Boor's point of view has some advantages (see the
postsecript). Thus we shall develop de Boor's idea in this paper and, in
particular, prove the total positivity of the discrete B-spline collocation
matrix.

Let us begin with some notations. As usual, Z denotes the set of
integers, R the set of real numbers, and a®  the set of functions on B
into A. Thus, %% is the set of real bi~infinite sequences. For i,j e %,
we mean by [i,j] the set {ne3z; 1 < n < i),

For k€% k> 1, Ilet t = (ti)-: be a non-decreasing real sequence

with £y < t1+k' It is well~known that

k-1

N s = ([ +

1t T PEpprerertyyd = et ie - 0

*Mathematics Department, University of Wisconsin-Madison, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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are B-splines of order k for the knot sequence t. Here,
[pgreeerp 2t

denotes the r-th divided difference of the function f at the points

po,...,pt, and (x-t:):-1 1= (max {o,:n})"".

Suppose now that (u j)-: is an increasing sequence of integers. For

T j 3= tll « consider the B-splines associated with the knot sequence
b

I = (tj)_. H

k=1
Nj,k(t(t) = ([rj+"...,tj+k] - [tj,coo'tj+k-1])(0-t)+ .

Since N $ok,T is also a spline with knots 2, it can be represented as a
[ l-

linear combination of the N i t"' by the Curry-Schoenberg theorem (see
’ ‘s

(4 113]):

(1) M k0r i Bj.k.;,g‘“ N,

¢ ot

Following de Boor (2], we make the following definition:

Definition 1. The coefficient sequence Bj Xttt € B dn (1) is called a
gt

discrete B-spline with knots T and with respect to t.
It is known from (2] that

(2) ‘j.x.;.g‘“ - (g”k - tj)[tj,.;.;tjﬂ‘](- - t1+1)+ eesf(e = ‘u-k-t)-f .

When k=1, (2) reads




Tame A L o

SN 2 ot B Menrott 3, .

’ = - . ¢ - o
(2') 33'1'3':’(1) (tj+1 tj)[tj'tj'ﬂl( t‘)"_

where
1 if 2> 4,

SR 0 if 2 <4,

will be abbreviated as

i3 vt o A Y P R iy BT e

If T and are clear from the @
I ana ¢t e context, Bj.ku,}’.;

[} or even to Bj N

3.x’

Remark 1. Definition 1 uses a different normalization than do (5.10a)

and (5.10b) of [2]}. Clearly,
) t -t
() = A a1,

B
JekoTog €

where ut(i) is in the sense of (5.10b) of [2].

Let us now establish some basic properties of discrete B-aplines.
Lemma 1. (Marsden's Identity)

—————————— ]

= 1,

(3) § sj'klIIE

It follows from Marsden's Identity (see {2]) for continuous

Proof.

B~splines and (1) that

E Ni,k,; = | = § “j'kls = j{(g ijkl:'s(i)nilkrs)
- z(} ’j.k.;.;m) LR

Since L g (i € Z) are linearly independent, (3) must hold.
’ 's

' Lemma 2. (Composition formula) Let ¢t = (ti)-: be_a non-decreasing

real sequence with ¢t i <t Jyo g 2 subsequence of t and X a subsequence

of p. Then




Proof. By (V),

L8y,z e "e " Mmx " L Bk kg T

i -

E Bj,k,;,e“) (E Bl,k,g.s“”'t,k,s) = E [g Bjokoiog(‘)stnktgcg(i))uickcs :

(i € %) are linearly independent, (4) follows from the
above equal.:l.ty.

Iemma 3. (Recurrence relation) For k » 2,

8 _q(1) B, . ,(1)
(5) By () = ry =ty o e - e ‘
' J+k 3+1 J+k=-1 b
Proof. Note that for any T € t,
| (T - ti+1)* eoe{T - t1+k’2)+ (t - ti‘k‘1)*
3
T LR POY LRI UIPLIR L TP
Applying leibniz's formula to the above product, we obtain
] Bj'k(i) j+k Tj)[tj'ooo,tj’k]('-t1+1)+ ...(..t1+k")+
J+k
Ty j)tzj{:rj,...,r ECTVRD MPETI Lo URPe J0 § L SVTTYL 00 [ Lo LR
(tj+k j)[tj'...'tj+kl,(..t"l)* ...(.-ti+k‘2)+(tj‘.'k.ti+k-1) i
LK 2 [ ] ) ?
j+k j>[11'...‘tjfk'1]( t1+1)* PP | .ti+k-2)+ ‘




]}("t1+1 )+aco( .-t1+k-2)+

- (tj‘bk-ti"k"‘){[tj"ﬂ'..."tj"‘k] - [Tj,o-o,Tj+k-1

» + (tj+k-tj)[tj'...'tj+k-1](.-t1+1)+ o-o( .-ti"'k-z)"'

. - {(tj#k-t.lﬂt-‘l)[tj'ﬂ'."'rjﬂc] + (t“_k_rtj)[tj,...,tjﬂ‘_‘]}(°-tu1)+...(-c1+k

= (1t -t )31:1‘5:1::1 + (t -T,) ° k-1(i)
J+k i+k~1 tj+k - tj+1 i+k=-1 3 tj+k_1-tj
This proves lLemma 3,
Lemma 4. Por a fixed s € %, let
2 if L <s
\’l =
L+1 if R D> 8.
Py = tvl ahd g = (p‘)_: + In other words, p is formed by dropping an
) entry from t. Then
= L < i-1 2>
(6a) Bl,k.g.g(i) 0 for i or i

> 0 with strict ineguality iff
(6b) 81—1,k,2,£(1) 0 with strict in ality Liff ti*k > t.)
(1) >0 with strict inequality iff ti < t. .

(6¢c) 61""2'2

Proof. 1If tz > t’, then Nl,k,g = “l*1,k,5 » and it follows that

ﬁ—,
.
-

i B"k'g's(i) - 61'z+1 for all i,%.
i

: In the same way, for t, . .. St_,

g

E 3‘-*'2'5(1) - 61,2 for all i,R%.
£

Now (6a) is easily derived from what has been proved, Moreover, when

tz < t' < tl+k+1' we have

e L
e e e A mT e T e



()N 8 (L+1) N

N‘vkce - 8zlklgls ’vokls M "okpgvg ""'10*'&

It is known that N has the game sign as 8 + €)

L.k.p
for sufficiently small € > 0 (seel2]), so

l) in (t;p t

tox,pt! L

[} () >0 for t, < e. <t

‘lk'gls f ] L+k+1;

similarly

8 (2+¢1) > 0 for ¢, < t. <t

2,%,0.t [} L4k

Susmarizing these facts we get (6b) and (6c).

Lemma S. Suppose gez‘ and Tj-tu for all j € 2. Then

3

(7a) ¢, <t ]

() ¢, =¢ and max {pl t,. =t .} > max {q| ¢t =t };
1 1
Y P Pieg ¥
(7c) t > t N )

} > max{q] ¢ =t } .

(7d) ¢ =t and max{p| t =t
+k- +
14Kk-p i+k Maxmg P4k

Proof. We use the linear functional A i given by the rule:

k=11 o(k=1-X) £)pTe(E), all ¢,

k=1
(8) A fa= ] (-1
=0




where Y(t) := (1:1.‘._1 - t)es

{9)

Hence (8)

In case (7b) write c 1= max {plt1+p - ti}' 4 1= max {gjt

4 € c-1

a’:ko_trs

Taking £ = t

de Boor-Fix Theorem (see[4; 116-118}),

In case (7a), choogse § 8o that

N (§) =

Jek,X

and (9) yield

and

(t +) =

uj tko; i

R {4

i

Cases (7c) and (7d) can be treated in the same way.

(1) > 0. Let

'(tiﬂt-‘l

eI

x‘uj k. X = sj X 3o

ti < E < tuj « Then

(k=1)
jokc}'

(E) = eoo = N () = 0.

"0
.k, 3

lekl;ls(i) = Ai“j'kl'-t = 0.

Y34q

(t +) B see = D‘l(k-d.z)

' =
ujvk:} i ko3 (egh) =0

{c=1)

tiﬂ = cee = Y (ti-*) = 0.

Bj,k.;,s(i) - x"-njckns = 0.

st"

- t)/(k=1)1 and €, < G <t

3

+ in (8) and substituting these values into (8), we obtain

Now suppose that none of (7a) -~ (7d) is true. We want to show




Ba= {2y <2<y £ eyl and |[E| := the cardinality of E.

3 4k’

We shall proceed by induction of |E|. The case |E] = 0 is trivial. The
case |E| = 1 is reduced to Lemma 4. Assume now that our statement is true
for |E| < n. We want to prove our statement is also true for |E| = n. Take
any s € E. Let p be defined as in Lemma 4; that is, vy = L for L < s,

vy = 241 for 2 > s and Pgs= t“ . By Lemma 2 and Lemma 4,
2

aj,k'z'su) - E Bj.k,;.g“’)sl.k.g,g(“

=8 (i-1)8

11,k,p,e ')+ B

jlklzlg (41,

Ik, 3.0 Koot

All terms that appear in the above equality are nonnegative. It seems
appropriate to treat the following three possible subcases individually.
(1) ti > t' « In this case, Bi_,,k,g,g(i) > 0 by (6b). We need to

- > - - = =
show Bj,k.t,g(i 1) 0. If i-1 > s, then vi_‘ i and vi-1+k i+ ks

8o (i=1) > 0 by induction hypothesis. Assume now i-1 < s. If

ijktsng

t, >t , then ¢t

1 u 1=1 > tu or

3 3

t =¢ and max {pit

1-1 by t4p-1 = ti—1} = 0 < max ﬁ!ltu =t }.

itq 3

Hence 8 (i-1) > 0 Dby induction hypothesis again. Finally, suppose

3.x.30p

= . > > -
ti tu Then t1 t' t"j implies t' t
2 i and i € s would imply

Thus < i3 for

it ¥y

otherwise

3

max {plti* = ¢t } > max {q|t =t 1},
p- Y M M
itq 3

a contradiction. 1In conclusion,




= max {pit =t .} <max {qlt, =t 3,
e b5 Veq

max {p|°1-1+p =0, 4}

so that 8 T (i-1) > 0.
’

Jo.koTop

{11) t1+k < ts . This case can be treated in the same way as (i) is.

(111) ¢, < <t . Lemma d tells us that both 51_1'k'2’£(1) and

(1) are positive in this case. Thus we need to show that at least

Bilklgl:-
one of Bj,k,;.g(i.1’ and Bj'k'z'g(L) is positive. If either ti > t"j or
t,,. <t , then this holds by the observation made in (i). Next, suppose
i+k uj+k
t, =t s t = ¢ and
4
i "j i+k uj+k
either max {plt = ¢, } < max {qlt =t }
i i
+p Hj+q Hj
or max {plt = ¢t } < max {qit =t },
+k- .
i+k-p i uj+]‘ u3+k

then one can easily get Bj'k'I'g(i-1) >0 or Bj:kigog(i) > 0, wusing the

same argument as in (i). The remaining case to be discussed is

max {plti+P = ¢t } = max {qltu = ti} and

. pAL
max {plti+k-p = t1+k} = max {qlt"j+k-q = t1+k}'
Let c := max {plti+p =t,}, e := max {p'ti+k-q = t, - Then
"j+c+1 > i+ec, uj+k-e-1 < it+k-e,

hence

Birk-e-1 = Vjeger € (Itkme=1) = (i4ch1) = (Jrk-e=1) = (jreri).

This means s € }J, which contradicts the choice of s. Lemma 5 is proved.




We are now in a position to prove our main result.

Theorem 1. Let t := (t 1)-: be_a nondecreasing real sequence with
[ _J
ti < tiﬂ:' all k, ("j)- an_increasing integer sequence, tj i= t"j and
let I = (7 j)-: « Let (Bj) j--: be the sequence of discrete B~splines of
order k with the knot sequence 1 and with respect to t. Let

11 < 12 Cos ol 1“

be a finite increasing subsequence of integers, and set

) = ‘“3“:”1 <r¢<m

U = (ur

b
Then for every subsequence q1 L SN 4 q-,
11’ cee ey 1“

(10) det U >0

q" see, q-

with strict inequality iff both of the following conditions are satisfied:

(i)i Bq (1r) >0 for all r = 1,2,...,-,

o
(ii). If there is some s € 2 such that ti = t' for some 1, tl_:en
r
1r-d < Lr - dr
T
where
d_ = x - max {plt =t }.
b 4 1r+p it
Proof. Write
1 .c..,i
A = U 1 n .
q1’Q.Q'%

If 8 (L )=0 for some r, then B (i, ) =0 for all &, j, with
q. F 9, t
1 <2< r€3j<m by Lenma 5. Thus columns r,...,m of A are linearly
dependent and det A = 0. Without loss of generality we may assume further

that both the first superdiagonal and subdiagonal of A are positive,

-'o- M




(11) qu“rﬂ) >0, £=1,...,m1 and qu(ir_1) >0, r=2,...,m,

Otherwise, we would have, say, 8 (:I.r) = 0 for some r. It would follow
1.k
that Bq (1z)-o for any 2, J with 1 € 2 <€r < j<ma, Thus
3

11'...'11' 1”11001,’.
det A = det U °* det U

Qqreeeod, : SVPRTTRYL 3

i ,ooo,i i 1000'1
where det U [ 1 r] and det U [ r+ -] are lower order
q,l""qr %1""'%

determinants of the same form. If m= 1, then A is a 1 x 1 matrix and
det A > 0, trivially. Thus if we use induction on m, then det A would
already have the property declared in Theorem 1. From now on we alwvays assume
(11) to hold.

We point out that (11) yields
(12) qu(itt1) pJ 0, X = 1,00.,..

The only thing we have to prove is Bq (11-1) >0 and Bq.(i.ﬂ) > 0, while
1
in all the other cases this is a direct consequence of (11). Since

g (i,) >0, i, > hence i, -1>uy =12y then

‘12 1 o 1y "qzl 1 qz q10

¥y ,k(11 - 1) >0, obviously. If ¢t _. = t, and t, _, <t , then
1 1 q, 1 1

max {plt, . =¢t _ . }=0 <max {qlt =t __L
11 1 11 1+p uq'ﬂ 1

So we algo have Bq (1'-1) > 0. The last possible case is
1

t =t = ¢t « Then
i’-1 uq 11
1
= L0 .‘ + XX
max {plt1 -1 t _"p} = 1 + max {p|t1 - -t *p)
1 1 1 1
< 1 + max {qltu ==ty } € max (qlt" =ty h

9 9,49 q, U*e




therefore (1.,~1) > 0. Similarl B (4. +) > 0.
Bq1 1 ) Yo q- n
As in Lesma S5, let

B = {2) M << uq-*k

We will proceed by induction on (E|. If (E| = 0, then A is a diagonal

'le!}

matrix, so the proof is trivial. Suppose now that, for [E| < n, our theores
is proved, and we want to show the conclusion of Theorem 1 also holds for
|E| = n.

We have proved that if (i) is violated, then det A = 0. Suppose now

that (ii) does not hold. Then there is some s € I such that tl = t. and
r

1r_dr-1r-dr. Form p by dropping s from t as we did in Lessa 4. Let

Vo= (Bz,k,g,;“z’) 1<réa

W= (sqr'k't'gm)

"I 1 4] *
q‘ q_.+k 1

1<r<m

f Then A = VW by Lemma 2. Further, the Cauchy~Binet formula (see(6]) gives

‘.' 11,12'0-.'1n E"‘z'.."%
(13) det A= | Qetv det W .
CRERNeT S TAT TARSIAN Lyedgeeceaiy
Since t, = ¢t and ¢t = ¢ ~d , we have
j'r s "r-dgtk 1: 4
8 (L)=0 and 8 (1 }y=0
ir'k'g's T it-dt.‘ 'k'g's :"dr

by Lesma 4. Furthermore,

-2




8

(ih) =0 for 3J ¢ 1t-dr-1 or 3 ? ir , hs= 1r-dr""'1t .

jlklgls

Congider the following matrix with dt+1 rows:

r -
coe i seoo i i coe
Bir"dr-" 'k'E'E( r'dr) Bir.dr'k,g,s(ir-dr) Bir"1 ,k'gys( t-dr) Bir'klels( r’dr)
ese i i see i e
L Bir-dr-1,k,g,s( r) Bir-dr,k,g,g( r) Bir-1,k,2,;(lr) Bir,k,g,g( :) ]

All its entries except those in columns ir-dr,...,ir-1 are zero. Thus the
rank of this matrix is no bigger than d.. Hence the dr+1 rows of this
matrix are linearly dependent. This shows that the rows r—dr, r-dr+1,...,r

of the matrix A are linearly dependent. Thus the rows r—dr, t-dt+1,...,r
i ’1 'coogi
1772

of each V [ 1 are linearly dependent, so that
S &

11,12,...,1n

det V =0 for all €1 < Ez € vee € Em .

51'€2"°"€m

Therefore det A = 0 by (13).
Suppose now that both the conditions (i) and (ii) are satisfied. We want

to show det A > 0. We shall argue by induction on |B| again. Take

8 €E. Form ¥V and p as we d4id in Lemma 4. Let V and W have the same

meaning as above. By induction hypothesis and Lemma 4, all products that

appear on the right-hand side of (13) are nonnegative. Let r be the least

integer such that ti > ts « Then ti < t. « There are two possibilities
T =1

to be discussed:

(u) 1!"1 < 1t-1 .

-13-




In this case, we choose

& "

Lh-1 for h » r,

"h for h < r. .

Then 51 < Ez < vee ¢ E‘ + By Lemma 4 and the choice of the §'s,

B;h'k'g‘s(ih) > 0. h= 1,2,0.-,..

In addition, if h < xr, then we have veh - ih and vehﬂ‘ - 1h+k or

"hﬂ:ﬂ‘ Thus (12) together with Lemma 5 tells us that

aqhtkczvg( Eh) > 0.

Similarly, if h » r, then we have “Eh = ih -1 and vEMk - 11*“ - 1 or
i,4x 80 the above inequality also holds. By induction hypothesis we assert

that

i"iz'...'i- 51IE21"'lEn

>0 and det W > 0.

det V 51052000005n q1:q2o---.qn

11‘12,oon'1-
By (13) and (14) we have det U > 0.
T

(B)ir-1 = 11_ In this case, condition (ii) gives

1.

1t-dt -4

where d = k - max (plt“p - tir}. There exists an integer c,
1€c« dr' such that 1'_(‘:_” = ir = (c=1) but lr-c'( 1t = ¢« Thus

(15) Lo Cd o= (Loctt) =t my =1, ]

=C




Let
1h-1 for h > r-ct+t,

(16) ﬁh =

Lh for h € r—-c.
Prom (15) and (16) we see that E1 < 52 € eee ¢ E-. Now Lemma 4 yields that

i '1 'oto'i
detv | ! 2 Bl 0.
E1I£2"..'€.

Using the same argument as in (a), we get

E1'52""'%

det W > 0.
1dgee e edy

This proves our theorem.

Remark 2. If t is a strictly increasing sequence, Lemma 5 can be

stated as follows:

with strict inequality iff ¢t < t_,

5 €%tk € Gy,
the condition (ii) is automatically fullfilled as long as (i) holds.

Furthermore, in Theorem 1,

Remark 3. It is interesting that the Schoenberg-Whitney Theorem (see(9])

can be derived from our Theorem 1. Indeed, let I= (T )_: be a non~

3

decreasing knot sequence, 11 < tz € oo0 € t-, and let t be a knot sequence

formed by adding some knots to I s that t has exactly k multiples at

each 1t i=%,2,.0..,ms Then

i'

Nj (t,) = Bj

akvs :k,;.g‘ ti)

according to (1). Now one could easily see that the Shoenberg-Whitney Theorea

is a consequence of Theorem 1.

@ e e e n e g0

F——




Postscript

This work was done in July 1980. Later I became aware of the three

related papers (1], [5] and [7). Essentially whether explicitly or
implicitly, these three papers view discrete B-splines as the coefficient
sequences associated with the expansion of continuous polynomial splines in
B-gplines. This is just de Boor's point of view (see{2]). In {1}, the author
provided an algorithm for further subdivision of a knot sequence. The basic
idea of [1] is to investigate what happens when one inserts new knots into a
given knot sequence. The essential idea of the present paper is also
"inserting new knots” and "inserting one new knot each time". In (5], the
authors develcp more properties of discrete splines. Lemma 1 and 3, a part of
Lemma 4 and 5 of this paper overlap with [5]. However, (5] is based on the
recurrence formula, wvhile my Theorem 1 does not need recurrence formula though
the proof for the recurrence formula (Lemma 3) is more straightforward in my
opinion. In [7], the authors give the shortest way to prove the variation
diminishing property of B~spline approximation by using a geometric
observation. Their methods can be easily carried to proving that the
associated discrete spline collocation matrix is sign regular, but it seems
hard to determine which minor is really positive along this way. In the
present paper, by the composition formular {(Lemma 2) and the Cauchy-Binet
formula, we are able to obtain the exact criterion for the positivity of a
given minor. I believe that the determination of such positivity is

significant and expect that Theorem 1 will play a role in discrete spline

- interpolation, discrete minimization and other related topics.




(1

2]

(3]

(4]

(5]

[e)

(71
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